Group Actions on Posets
نویسندگان
چکیده
In this paper we study quotients of posets by group actions. In order to define the quotient correctly we enlarge the considered class of categories from posets to loopfree categories: categories without nontrivial automorphisms and inverses. We view group actions as certain functors and define the quotients as colimits of these functors. The advantage of this definition over studying the quotient poset (which in our language is the colimit in the poset category) is that the realization of the quotient loopfree category is more often homeomorphic to the quotient of the realization of the original poset. We give conditions under which the quotient commutes with the nerve functor, as well as conditions which guarantee that the quotient is again a poset.
منابع مشابه
Actions of a separately strict cpo-monoid on pointed directed complete posets
In the present article, we study some categorical properties of the category {$bf Cpo_{Sep}$-$S$} of all {separately strict $S$-cpo's}; cpo's equipped with a compatible right action of a separately strict cpo-monoid $S$ which is strict continuous in each component. In particular, we show that this category is reflective and coreflective in the category of $S$-cpo's, find the free a...
متن کاملA radical extension of the category of $S$-sets
Let S-Set be the category of $S$-sets, sets together with the actions of a semigroup $S$ on them. And, let S-Pos be the category of $S$-posets, posets together with the actions compatible with the orders on them. In this paper we show that the category S-Pos is a radical extension of S-Set; that is there is a radical on the category S-Pos, the order desolator radical, whose torsion-free class i...
متن کاملPoset Topology: Tools and Applications
Contents Poset Topology: Tools and Applications 1 Introduction 3 Lecture 1. Basic definitions, results, and examples 5 1.1. Order complexes and face posets 5 1.2. The Möbius function 9 1.3. Hyperplane and subspace arrangements 11 1.4. Some connections with graphs, groups and lattices 16 1.5. Poset homology and cohomology 17 1.6. Top cohomology of the partition lattice 19 Lecture 2. Group action...
متن کامل2 Eric Babson and Dmitry
In this paper we study quotients of posets by group actions. In order to define the quotient correctly we enlarge the considered class of categories from posets to loopfree categories: categories without nontrivial automorphisms and inverses. We view group actions as certain functors and define the quotients as colimits of these functors. The advantage of this definition over studying the quoti...
متن کاملPeckness of Edge Posets
For any graded poset P, we define a new graded poset, E(P ), whose elements are the edges in the Hasse diagram of P. For any group, G, acting on the boolean algebra, Bn, we conjecture that E(Bn/G) is Peck. We prove that the conjecture holds for “common cover transitive” actions. We give some infinite families of common cover transitive actions and show that the common cover transitive actions a...
متن کامل